A general Hsu-Robbins-Erdős Type estimate of tail probabilities of sums of independent identically distributed random variables
نویسنده
چکیده
Abstract. Let X1, X2, . . . be a sequence of independent and identically distributed random variables, and put Sn = X1 + · · ·+ Xn. Under some conditions on the positive sequence τn and the positive increasing sequence an, we give necessary and sufficient conditions for the convergence of ∑ ∞ n=1 τnP (|Sn| ≥ εan) for all ε > 0, generalizing Baum and Katz’s (1965) generalization of the Hsu-Robbins-Erdős (1947, 1949) law of large numbers, also allowing us to characterize the convergence of the above series in the case where τn = n −1 and an = (n logn) 1/2 for n ≥ 2, thereby answering a question of Spătaru. Moreover, some results for nonidentically distributed independent random variables are obtained by a recent comparison inequality. Our basic method is to use a central limit theorem estimate of Nagaev (1965) combined with the Hoffman-Jørgensen inequality (1974).
منابع مشابه
A General Hsu-robbins-erdös Type Estimate of Tail Probabilities of Sums of Independent Identically Distributed Random Variables Une Estimée Générale De Type Hsu-robbins-erdös Pour Les Probabilités Des Queues Des Sommes Des Variables Aléatoires Indépendantes Et Identiquement Distribuées
Let X1, X2, . . . be a sequence of independent and identically distributed random variables, and put Sn = X1 + · · ·+ Xn. Under some conditions on the positive sequence τn and the positive increasing sequence an, we give necessary and sufficient conditions for the convergence of ∑ ∞ n=1 τnP (|Sn| ≥ εan) for all ε > 0, generalizing Baum and Katz’s (1965) generalization of the Hsu-Robbins-Erdős (...
متن کاملA Comparison Inequality for Sums of Independent Random Variables∗
We give a comparison inequality that allows one to estimate the tail probabilities of sums of independent Banach space valued random variables in terms of those of independent identically distributed random variables. More precisely, let X1, . . . , Xn be independent Banach-valued random variables. Let I be a random variable independent of X1, . . . , Xn and uniformly distributed over {1, . . ....
متن کاملOn large deviations of sums of independent random variables
Extensions of some limit theorems are proved for tail probabilities of sums of independent identically distributed random variables satisfying the one-sided or two-sided Cramér’s condition. The large deviation x-region under consideration is broader than in the classical Cramér’s theorem, and the estimate of the remainder is uniform with respect to x. The corresponding asymptotic expansion with...
متن کاملAsymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کاملLarge-deviation Probabilities for Maxima of Sums of Independent Random Variables with Negative Mean and Subexponential Distribution∗
Abstract. We consider the sums Sn = ξ1 + · · · + ξn of independent identically distributed random variables with negative mean value. In the case of subexponential distribution of the summands, the asymptotic behavior is found for the probability of the event that the maximum of sums max(S1, . . . , Sn) exceeds high level x. The asymptotics obtained describe this tail probability uniformly with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Periodica Mathematica Hungarica
دوره 46 شماره
صفحات -
تاریخ انتشار 2003